Applications are closed

BERYTECH E-HACKATHON · CLEANTECH EDITION

5 Days to Innovate in Cleantech and Hack Your Way into the Cleanergy Accelerator Program

Are you a team of innovators interested in solving challenges in Renewable Energy, Waste Management, or Water & Wastewater Management? Apply to the Berytech e-hackathon to receive technical and business support, work with fellow innovators and get the chance to win valuable prizes and access to Cleanergy Accelerator Program.

ABOUT THE
HACKATHON

Berytech, under its Cleanergy Accelerator Program, is organizing the second edition of the Berytech e-hackathon focusing on the cleantech sector, supported by the Embassy of the Kingdom of the Netherlands in Lebanon, in collaboration with the Association of Energy Engineers- Lebanon Branch and with the support of HOLDAL Group.

The e-hackathon is an exciting opportunity to develop your cleantech solutions using technologies such as Internet of Things, Big Data, and Artificial Intelligence, and get ready to join the Cleanergy Accelerator Program.

Throughout the hackathon – organized online, you will receive the assistance of technical, industry and business experts, and you will have access to the tools and hardware prototyping facilities in the Berytech Fab Lab.

The winners of the e-hackathon will win valuable prizes and an immediate access to the Cleanergy Accelerator Program. 

DAY 1

Technical Sessions

Get all the information and guidance you need to build your prototype, whether it is hardware or software

TUE, JULY 13, 2021

DAY 2

Business Workshops

Get all the information you need to turn your idea into a valid business solution

WED, JULY 14, 2021

DAY 3-DAY 4

Hackathon

Receive the support of business, technical and field experts

THU, JULY 15, 2021 and FRI, JULY 16, 2021

DAY 5

Pitching

Pitch your solution to the jury, receive expert feedback, and win valuable prizes

SAT, JULY 17, 2021

THE
PRIZES

1ST PRIZE

$5,000

+ Immediate access to the Cleanergy Accelerator Program

$3,000 prize + $2,000  grant during the first phase of the  Cleanergy Accelerator Program

2ND PRIZE

$4,000

+ Immediate access to the Cleanergy Accelerator Program

$2,000 prize + $2,000 grant during the first phase of the  Cleanergy Accelerator Program

3RD PRIZE

$1,000

$1,000 prize

The e-hackathon is organized by Berytech under the Cleanergy program that is co-funded by the Kingdom of the Netherlands and Berytech, in collaboration with AEE Lebanon Branch and the support of HOLDAL Group.

    Holdal strip- Cleanergy hackathon 2021

    WHO CAN APPLY

    You are encouraged to apply if you are an engineer, scientist, maker, scientist, creative, innovator, entrepreneur or a young professional who has an innovative idea or runs an early-stage startup related to cleantech.

    Your idea or startup should fall, ideally, under one of these sectors: Renewable Energy, Solid Waste Management, Water and Wastewater Management.

    A team working on a clean technology solution including an innovative process, product or service that reduces negative environmental impact and has the capacity to increase economical value and create job opportunities in Lebanon.

    You can apply with your own idea, or you can hack one of the preset challenges (see below).

    To participate you need to be a team of at least 3 people, preferably including one technical person. If you don’t have a team no worries, join our Hackathon Platform and find a team before applying.  

     The e-hackathon is open for people residing in Lebanon only.

    The process 

    • Submit your application before July 8
    • Check your inbox and follow the steps to join the hackathon platform, submit your idea/team and meet and brainstorm with other participants before the hackathon
    • If selected, attend the Berytech e-hackathon and develop your prototype and business model over 5 days  
    • Pitch your solution and get the chance to win

    Team requirements

    Only team applications will be evaluated for the selection of the 20 teams that will join the hackathon. Your team needs to have:

    • Three or more team members
    • An involved team interested to find an innovative solution to the cleantech sector
    • The solution needs to be at the idea stage, under development, or with an existing prototype

    THE 5-DAY
    SCHEDULE

    On Tuesday, you will attend virtual technical workshops to help you with developing your prototype

    4:00 pm Welcome and introduction + challenges

    5:30 pm Technical Sessions: (Hardware / Software/ IoT)

    8:00 pm e-hackathon kick-off

    On Wednesday, you will attend virtual business workshops to help you shape your idea, understand the needs of your customers, and develop your business model 

    5:00 PM Check-In

    5:10 PM Business Workshops: Validate your business idea and Lean Model Canvas 

    8:00 PM Hacking

    On Thursday , you will be given the time and support to work on your solution and develop your hardware or software prototype

    Teams will be receiving the support of experts: business/ field/ technical. Clinics will be scheduled for 30 minutes for each clinic and will be conducted from 10:00 am till 3:00 pm.

    10:00 AM Think Tanks with experts
    4:00 PM Workshop 3: Basics of virtual pitching
    6:00 PM Hacking

    On Friday,  Last expert feedback before the selection!   

    One clinic will be scheduled for 30 minutes and conducted from 3:00pm  7:00pm

    11:30 AM Check-in
    12:00 PM Round 1: Pre-selection 
    4:00 PM Final Round: 3-minute pitching session
    6:00 PM Winners Announcement

    SELECTION CRITERIA

    Use your hacking time wisely to build a prototype that showcases your product’s most important features. You will need to present your creative and hard work through (1) a prototype or demo of a prototype, and (2) a 3-minute pitch to present your solution in a sustainable business model.

    Idea Validation

    • Clearly addresses the challenges
    • Clear Value Proposition

    Innovation and Impact

    • The idea, device or method is innovative and solves the pre-set challenges 

    Customer Segment

    • Demonstrates clear customer understanding and empathy, and targets a specific pain, or problem for them 

    Competitiveness And Scalability

    • The business model is feasible and can generate revenue.
    • The solution is scalable across markets.

    Prototype

    • The product or service demo clearly exhibits the functionality.

    Team

    • Team member backgrounds are clear, fitting with the roles and responsibilities needed to take the idea forward.

    Start your application

    Applications are closed

    THE CHALLENGES

    Berytech has been working with experts as well as the public and private sectors to identify a list of challenges within the cleantech sector. These challenges could inspire you to innovate in the sector, specifically in Renewable Energy, Waste Management, and Water and Wastewater. Pick one or many challenges, come up with innovative solutions, build your team, and apply now to the e-hackathon.

    Challenges in the Energy Sector

    Shifting between the use of a solar-powered water heater and the auxiliary boiler depends on timing and the weather forecast. The process needs to be automated to optimize the use of both.

    What is needed: Can a low-cost system be implemented to monitor the weather conditions and automatically turn on/off the auxiliary boiler when needed?

    Maximizing solar energy use requires that solar panels be positioned in a way to capture most of the light. There is a certain inclination angle for the panel to fit the sun path. Technologies are available abroad such as Solar Trackers – devices that orient the solar panels or other payloads towards the sun. But such trackers are costly and work mostly for businesses.

    What is needed: How can such solar trackers be accommodated for solar panels for home use? Is there a way to develop a lower-cost inclination tool with sensors to arrange the inclination angle according to the sun path?

    Solar panels are made up of cells and some are designed in a way that if one cell is not functional, the whole panel becomes dysfunctional. This could be due to the breaking of the cover from weather conditions or blurring due to shading from sand or bird feces.

    What is needed: Is there a way to develop a system to detect the cells irregularities and mitigate or resolve them before the whole panel stops?

    Legionella is a bacteria found in stagnant waters that flourishes in temperatures between 20°C and 45°C. It is usually found in both potable and non-potable water systems and can cause Legionnaire’s disease, which is a severe and often lethal form of pneumonia. There is a need to have an automatic circulation of water to prevent it from being stagnant.

    What is needed: How can a system be designed in a way to shake the water (sensor as an alarm when it’s stagnant) and help prevent it from infiltrating into household water systems? Can a timer be created for the water pump or a low-cost sensor that could be installed for households?

    During the day, houses with solar panels can produce more electricity than they actually need. Any unused or surplus solar electricity can be fed back to the grid. This approach will allow the solar panels owners to “sell” their unused electricity and will provide a modular and distributed generation for the grid. However, connecting to the grid has many challenges and it requires advanced automated systems

    What is needed: How can smart technologies be used to indicate when to feed back to the grid? How can technology be used to monitor the share of households in any village in power plants and accordingly aid in ensuring all households have equal access to electricity?

    There is a need for better management of the street lighting grid. Solar street lights are becoming a challenge as they are lit at all times, and the only solution is to either have them all on or all off.

    What is needed: Is there a possibility to have a smart grid for street lights to control the lighting and save on energy by cutting at least 1 hour a day, continuing the process until the optimal lighting time is reached and then adjusting accordingly?

    Biogas is an important source of renewable energy for Lebanon and one with untapped potential, but the cost of investment is a barrier and there is a need for a strong local partner, such as a municipality, to be able to engage in such a project. Added to that, is the volume required to make it a profitable business.

    What is needed: How can forestry and forest residues be collected and processed, in large volumes, to generate energy whilst creating employment and incentivizing reforestation? Also, can there be potential in technology to generate biogas from cow or chicken manure, and to be re-used as a source of energy for heating the farms?

    By the year 2021, Lebanon is expected to have three major solar farms set up and operational, generating between 70 to 100 MW each. The farms will be spread across large areas of agricultural land.

    What is needed: Are there opportunities to utilize the area under the solar panels to facilitate the growth of new crops and make better utilization of the space?

    Wind farms have a large potential in Lebanon, with 3 windmill farms under construction in Akkar set to produce around 200 MW of energy. However, some challenges arise with such new sources of renewable energy that may have an impact on the biodiversity and livelihoods of the population in such areas.

    What is needed: Bird movement would negatively be affected posing danger to their lives, so what can be done to drive the birds away from such windmills? Additionally, cables run between one windmill and another need to be installed inland. What can be done to maximize the use of the land and can certain crops be planted to provide additional sources of livelihoods?

    Challenges in the Water & Wastewater Management Sector

    With the help of international organizations, regional water establishments have been changing at the managerial and financial levels to improve governance and performance. However, they still face the negative perception that public service entities in Lebanon are inefficient. Despite being financially autonomous, such water establishments do not have direct relationships with their customers. They also do not have the culture of service provision and customer orientation. However, they have recently engaged in social media efforts to change the negative perception and build trust with customers to increase their willingness to pay for their services. Yet, their databases of customers are not consolidated. Additionally, customers who do not pay the water fees are untraceable, so very little planning can be done.

    What is needed: How can technology help to work around data control and consolidation of databases to avoid bureaucracy and have more efficiency in customer relationship management? How can linkages be created among the different water establishments, such as the use of an open-source platform, to induce better planning and coordination?

    There is a controversy in Agriculture that relying on solar energy for pumping water for irrigation can also lead to overuse and an increase in the exploitation of groundwater sources. Water-saving technologies have been promoted in Lebanon, such as drip irrigation and hydroponics, adopted with the support of donor projects. There is an awareness increase among farmers to use water-saving technologies. However, farmers are keener on how much energy is needed to access and utilize the water (transport). There is a need for an integrated solution where solar water pumps are accompanied by water-saving techniques.

    What is needed: How can technology be utilized to monitor water use in Agriculture to reduce over-exploitation and demand from groundwater resources?

    In wastewater treatment, the sludge that is generated is mainly calcium carbonate and can be used in cement factories, animal farms (to reduce wetness and humidity) and paint industry. However, there is no proper collection system to collect the sludge and add more value to it for re-use.

    What is needed: How can the generated sludge be valorized and made useful for other local industries?

    The organic material or by-products of wastewater treatment are unused and dumped in quarries or landfills. This also applies to whey that is generated from the dairy industry, which can be used as a protein source in animal feed, but currently available in lower volumes, and scattered along the regions.

    What is needed: What can be done to valorize and make use of organic by-products in co-composting (integrating manure with sludge)? How can technology help in valorizing the whey generated from the dairy industry and re-use it in different industries?

    Challenges in the Waste Management Sector

    Hazardous waste, that is mostly toxic and infectious from medical labs and hospitals, is collected and treated by arcenciel. Currently, arcenciel collects 95% of the medical waste, an average of 13-14 tons per day. Ideally, those should be recycled and re-used in clinics and other, but are now sent back to municipalities and then dumped in landfills. For cytotoxic waste (cancer medication and others), around 45 tons are treated per month but sent to Germany for incineration. Pharmaceuticals also get treated in the same way, an average of 2 tons per month and once treated, sent to Greece for incineration.

    What is needed: There is no technology yet put in place to sort and treat the waste locally, so what local technology can be developed to further recycle this waste rather than it being dumped?

    Lithium batteries and other types of batteries used for cars, solar, and households, face ambiguous destinations. There is no data available on the process of the collection and treatment on this type of waste, but what is being done currently for car batteries is collection, extraction of valuable substances (plastic, other) and then dumping of the acid in agriculture land or rivers, infiltrating groundwater. It is estimated that 20% of the batteries are treated this way, while the remaining 80% is unknown. The current solid waste management strategy does not include treatment and recycling processes for batteries (sorting, storage, treatment). However, there have to be different solutions, given that the future is for hybrid cars, and an already flourishing solar energy, as a renewable source for energy across Lebanon.

    What is needed: How can technology help with the prevention of dumping toxic acid in agriculture lands, severely affecting soil properties and fertility whilst polluting groundwater?

    There are different initiatives carried out for sorting and treating household waste, but there are no incentives set to reduce household waste or encourage households to reduce the production of organic waste. Official figures estimate that there is excessive production of waste at the household level: 1kg waste/person in cities, and 0.6-0.8 kg waste/person in rural areas. Currently, 55% to 80% of household waste is organic.

    What is needed: How can waste be reduced to improve the environment rather than ruin it? How can technology help households reduce waste using sensors, IoT or other?

    Most of the garbage collected at the household level is large in volume and has to withstand some time before collection from service providing companies. Sometimes due to the large volume and delays, residents mix all their waste and throw it away.

    What is needed: Is there a way to create a residential kit to compress waste, thus allowing for large volumes to be stored and prepared for the collection companies?

    Waste management companies, such as Ramco or Lavajet, conduct periodical collection trips across the different neighborhoods in urban areas, with some areas producing more waste volumes collected than others. For example, they might go to one neighborhood in Beirut that does not have a lot of garbage, while stalling collection for other neighborhoods that may need urgent collection.

    What is needed: Could there be a smart bin system installed in a way that would allow for improved efficiency in collecting waste and signaling the companies that would also create automated routes for collection trucks?

    Agricultural waste, as defined by the United Nations, is all the waste produced as a result of various agricultural operations. This includes manure, wastes from farms, poultry houses and slaughterhouses; harvest waste; fertilizer run-off from fields; pesticides that enter into water, air or soils; and salt and silt drained from fields. Instead of leaving it untreated and dumping it, it’s critical to tap its potential whether via recycling or via useful products extraction.

    What is needed: How can waste from agriculture be treated to be re-used in Agriculture? What solutions exist or can be developed to address such potential in Lebanon? Can it be used as a source of energy for the farm?

    Lebanon does not recycle its waste from construction. The majority of waste generated from construction sites end up in dump fills or the sea, and only a small portion is recycled. Because of that, heavy metal pollution in seawater is increasing, evident in the high levels found in water samples collected from Ain Mreisse location. With no factories to recycle construction waste, smart solutions need to be created to make use of a large portion of this waste.

    What is needed: Can technology help in the identification and management of such waste before it gets to the dump fills, thereby reducing the amount wasted and recycling those that can be recycled using local facilities available?

    Want to take your cleantech idea or startup a step further?

    Apply to the Cleanergy Accelerator Program to get the chance to receive $100,000 in funding and support to develop your cleantech startup and scale it to success within one year!

    FAQ

    The event will be held online. You will receive all the needed login information once your team gets selected.

    We recommend between 3 to 5 team members with various skills including development, business and design.
    If you don’t have a team, don’t worry, you can still register and join the event platform to find a team before applying.  

    It’s not advisable. We strongly suggest that you check the challenges stated in the previous section and come up with an innovative solution accordingly.

    Yes. You will have plenty of free time to hack, you just need to make sure to attend all the online workshops and be ready for check-in so that the team doesn’t get dismissed from the competition.

    Depending on the Covid- 19 situation, you will be able to book an appointment to visit the Berytech Fablab and receive the support needed to build  your prototype. However, this will be subject to the precautionary measures related to the pandemic. You will not be able to access the space without face masks and prior booking as the number of people will be limited. 

    You can always build your prototype from the comfort of your home. We will be presenting the different typed of accepted prototypes during the workshop on product development. 

    You can find out more about our digital fabrication lab and check all machines and tools on the Berytech Fab Lab’s website

    THE SDGS

    As a member of the Global Compact Network Lebanon, Berytech enacts the 10 principles of the UNGC and the Agrytech program falls under Berytech’s mission to contribute to the Sustainable Development Goals.

      Sustainable Development Goals

      The e-hackathon is organized by Berytech under the Cleanergy program, co-funded by the Kingdom of The Netherlands and Berytech under the ACT Smart Innovation Hub Initiative. The e-hackathon was organized in partnership with:

      Holdal strip- Cleanergy hackathon 2021

      Berytech © 2021